
console-dev.de

Home of VisualHAM, N3D and HEL Library

« sine approximation with fixed point math part 2

Private:

introduction

I was experimenting how I could retrieve a stack trace on the Nintendo DS, using the devkitARM compiler, recently. A
callstack is a list of active subroutines of a computer program. This can be used to identify from which code-path a particular
subroutine was called, which is enormously helpful when detecting logical errors at run-time.

I tend to flood my code with “ASSERT’s”. ASSERT is used to identify logic errors during program development by
implementing the expression argument to evaluate to FALSE only when the program is operating incorrectly and then calling a
function to report the error:

1
2
3
4
5
6
7
8
9

void Vector2Add(Vector2 *dest, const Vector2 *v0, const Vector2 *v1)
{
 ASSERT(dest != NULL);
 ASSERT(v0 != NULL);
 ASSERT(v1 != NULL);

 dest->x = v0->x + v1->x;
 dest->y = v0->y + v1->y;
}

When any of the incoming arguments point to NULL, ASSERT will call a subroutine to report the error. Typically the report
includes the filename, line number and functionname. This information is helpful, but lacks of information from where the
function was called.

I use Vector2Add all over the place, how should I know what part in my program code does not work, when I only know at
some point a NULL argument is passed to Vector2Add?

Right, I need to know from where Vector2Add was called, I need a callstack trace!

my earlier instrumentation approach

Around 2005-2006 I implemented a callstack trace feature in HEL Library. HEL Library is a middleware solution to ease
development of Game Boy Advance titles.

The callstack trace was displayed together with an assertion-report, that looked like:

console-dev.de http://www.console-dev.de/2009/08/13/675/?preview=true&preview_id...

1 von 8 16.08.2009 13:57

Back then I used function instrumentation (-finstrument-functions) to build a list of subroutine calls at run-time. It was
basically a callback that was called for every function that is about to be entered (__cyg_profile_func_enter) and left
(__cyg_profile_func_exit).

This was a huge overhead and slowed down program-execution dramatically, but the callstack trace was so precious, that the
performance penalty didn’t matter for the debug library.

fail does not mean to stop

When I started the Nintendo DS version, one goal was to use an approach which does not have any impact on run-time
performance! I have tried several libraries, unfortunalety I didn’t find anything that worked for me.

This includes libunwind, backtrace, several GCC builtin-keywords to get return addresses of different calldepths, just to name
a few.

I gave all up. It was either a never ending story to integrate the library in to the project or headers / functions were missing in
libraries that come with devkitARM.

hacking to success, then fail

Rather than giving up, I decided to accept it as challenge and come up with my own callstack trace code. It was a long and
rocky journey, but at the end I had something that worked suprisingly well.

What I do is basically pretty simple, I interpret instructions of interest to simulate the beaviour of the Program Counter (PC)
and Stack Pointer (SP). The Program Counter indicates where the program is in its intruction sequence. Stack Pointer indicates
the current top of stack memory. The stack this is where local variables are located.

Armed with my own Program Counter and Stack Pointer variables, I can traverse program code and react when Program
Counter is assigned a new value, which basically means to jump to a different address and continue to operate there.

Example:

1
2
3
4
5
6
7
8
9
10

void FirstFunc()
{
 SecondFunc();
}

void SecondFunc()
{
 // Program Counter is located here <--
 ThirdFunc();
}

Let’s presume the Program Counter is located in SecondFunc, which was previously called by FirstFunc.

The thumb assembler version of this looks like:

console-dev.de http://www.console-dev.de/2009/08/13/675/?preview=true&preview_id...

2 von 8 16.08.2009 13:57

1
2
3
4
5
6
7
8
9
10
11
12
13

FirstFunc:
 push {lr} ; Push Link Register (LR) on stack
 sub sp, sp, #4 ; Update Stack Pointer by 4bytes because LR was pushed
 bl SecondFunc ; Call to SecondFunc()
 add sp, sp, #4 ; Update Stack Pointer to point to pushed LR again
 pop {pc} ; Pop LR from stack and store in Program Counter, this will return to caller

SecondFunc:
 push {lr} ; Push Link Register (LR) on stack
 sub sp, sp, #4 ; Update Stack Pointer by 4bytes because LR was pushed
 bl ThirdFunc ; Call to ThirdFunc()
 add sp, sp, #4 ; Update Stack Pointer to point to pushed LR again
 pop {pc} ; Pop LR from stack and store in Program Counter, this will return to caller

I need to get my hands on the Link Register (LR) to return to SecondFunc’s caller (*1). Since LR was being pushed on the
stack, I know where to look! What is left is to traverse the program code in reversed order and interpret the “sub” and “push”
instructions.

Moving the Program Counter in reversed order, which actually would be a backtrace imo, didn’t work out for some reasons
and I wasn’t able to solve those problems. It did, however, worked in some cases, unfortunalety too unreliable.

when in no doubt, try it out

I stayed away from this problem for week and then had the idea why not trying to simulate the Program Counter the same
way it would walk along when it continues program execution normally. It means rather then traversing program code
backwards, I tried what happens, when I forward advance PC. Now I have to interpret “add” and “pop” instructions and this
works suprisingly well!

From here on it took a few hours to come up with a version that is robust enough to work in all places that I tested with my
code base, which consists of both, C and C++ source code.

Obviously it does not mean it always works in every sitiuation with all source code in the world. For example, optimization
level -O0 generates so many unconditional branches and places return code all over the place, that the Stacktrace function
fails. It supports thumb code only and has problens with hand written/optimized assembler routines (when LR is not push’ed
and PC not pop’ed).

I added a couple of more instruction Stacktrace looks out for:

1
2
3
4
5

pop {...pc} ; adjust PC to the pop'ed value
add sp, nn ; adjust SP by nn
sub sp, nn ; adjust SP by nn
b ofs ; set PC to the addr PC+ofs
add sp, rn ; adjust SP by the value rn points to

The unconditional branch instruction “b” is from hell, because it could lead to an infinite loop in Stacktrace, such as while(1)
{}. For this reason I added two special cases:

Limit how many instructions are allowed to touch
Branch only to the target address when it’s different from PC

When any of the conditions evaluates to true, Stacktrace aborts and outputs the callstack only to this position. It will,
however, report that an error occured.

Support for the unconditional branch was important, because the compiler generates code like this sometimes:

console-dev.de http://www.console-dev.de/2009/08/13/675/?preview=true&preview_id...

3 von 8 16.08.2009 13:57

1
2
3
4
5
6
7
8
9
10
11
12

ExampleFunc:
 push {lr}
 ...
 tst r0, #2
 bne .L92 ; if r0 is not 2 then jump to L92
 ...
.L90:
 pop {pc} ; returns to caller

.L92:
 bl AnotherFunction
 b .L90 ; jump to L90 (above)

When we return from AnotherFunction we must jump to L90 to pop the return address from the stack and return to the caller.
This is the reason why I added support for unconditional branches. I haven’t noticed other branches that are of importance
for Stacktrace yet.

At this point of time I was able to return to each function-caller and have the return addresses, e.g:

resolving function names by hand

In order to map the memory address to an actual function, we have to look up the address in the so called Map file. Map files
are typically plain text files that indicate the relative offsets of functions for a given version of a compiled binary. This file is
generated by the linker when you pass -Map to it, here is a part of it:

1
2
3
4
5
6
7

.text 0x02000310 0xdf28

.text 0x02000380 0x1ac main.o
 0x02000394 PrintStacktrace
 0x0200046c FirstFunc
 0x0200040c ThirdFunc
 0x020004c8 main
 0x02000450 SecondFunc

console-dev.de http://www.console-dev.de/2009/08/13/675/?preview=true&preview_id...

4 von 8 16.08.2009 13:57

Line 1 specifies where the .text section (program code) starts and its size. Line 2 specifies the start address of the object file
main.o followed by all functions it contains. While writing this article, I have learned static functions are not listed in the map
file.

In order to find the function name of the memory address 0×02000458 (from screenshot above), we have to check in which
range it is located. But it would be too simple when the .map file has everything sorted by addresses, so we have to do this
instead.

Here is a sorted list by addresses:

1
2
3
4
5
6

.text 0x02000380 0x1ac main.o
 0x02000394 PrintStacktrace
 0x0200040c ThirdFunc
 0x02000450 SecondFunc
 0x0200046c FirstFunc
 0x020004c8 main

The memory address 0×02000458 is between:

1
2
 0x02000450 SecondFunc
 0x0200046c FirstFunc

So 0×02000458 belongs to SecondFunc. While this approach seems to work, it is complicated and really only works when
you have the exact .map file available that was used to build the project. You can’t use a .map file of a different version of
your code, this is very unlikely to work.

It would be so much better when the actual function name could be displayed instead!

what is your function name, dear memory address

Fortunalety, the compiler has an option to insert function names in plain-text infront of each function. This can be activated
by adding -mpoke-function-name to the CFLAGS variable in your makefile.

But it not only inserts the name, it also inserts a bit-pattern to recognize that there is a function name as well as a relative
offset to the name from this pattern.

What Stacktrace function does, it takes a memory address and then decreases this address until it detects the bit-pattern of
the function name and we have it!

console-dev.de http://www.console-dev.de/2009/08/13/675/?preview=true&preview_id...

5 von 8 16.08.2009 13:57

Well, there is of course a special case again. When -mpoke-function-name has not been specified, the function name bit-pattern
is missing, thus Stacktrace would try to find it until it reaches the start of the text section. While this makes little sense, I
added a limit how many 32bit words the “GetFunctionnameTag” function is allowed to touch before it returns “did not find”.

how to integrate in your own project

The stacktrace.zip archive contains the entire source code, you only need those two files:

stacktrace.h
stacktrace.c

Copy them to your source code directory. Then open the makefile file which should be located in your project directory also.
You have to adjust the following variables:

1
2
ARCH := -mthumb -mthumb-interwork
CFLAGS := -O2 -mpoke-function-name

Now do a rebuild, rather than a regular build. You can do this by performing a “make clean” first, then a “make”. Don’t forget
to include stacktrace.h in that file where you want to use Stacktrace.

Optimization level -O2 worked best with Stacktrace so far. When you use more aggressive optimization levels the compiler
also starts to inline code heavily, which can be quite confusing when the Stacktrace output does not reflect what you see in
your high level code.

stacktrace interface and usage

The usage of Stacktrace function is fairly simple.

All it expects is an array of StacktraceEntry elements and the count of it. Here is the interface from stacktrace.h:

console-dev.de http://www.console-dev.de/2009/08/13/675/?preview=true&preview_id...

6 von 8 16.08.2009 13:57

1
2
3
4
5
6
7

typedef struct
{
 unsigned int addr; //!< Return address
 const char *name; //!< Name of function
} StacktraceEntry;

unsigned int Stacktrace(StacktraceEntry* dest, unsigned int count);

Use it like this:

1
2
3
4
5
6
7
8
9
10
11
12

void OutputStacktrace()
{
 unsigned int n;
 unsigned int count;
 StacktraceEntry entries[32]; // allocate memory for 32 stacktrace entries

 // get only the 10 deepest stacktrace entries
 count = Stacktrace(entries, 10);

 for (n=0; n<count; ++n)
 printf("0x%08x: %s", entries[n].addr, entries[n].name);
}

improving stacktrace

If you want to improve Stacktrace, I recommend to read through the comments in stacktrace.c and enable
STACKTRACE_VERBOSE, by setting it to 1.

This will, as far as OutputDebugString (also in stacktrace.c) uses a debug message type your Nintendo DS software emulator
understands, output what instructions Stacktrace comes across and interprets.

I’ve added an opcode structure for all instructions Stacktrace interprets as well as print-routines to dump the contents.

I have used no$gba during development, which was of great help because of its “debugger“. Usually I yell about only see the
assembler code in the shareware version of no$gba, but for this project it was exactly what I needed

conclusion

The Stacktrace function…

works suprisingly well for being such a hack
does not need debugging information/symbols
it runs directly on the target device, not needed to be connected to GDB or a similar debugger
does not come with any run-time performance penalty
works best with optimization level -O2
is most informative when adding -mpoke-function-name to CFLAGS in your makefile
comes with full documented source code
uses very little Nintendo DS specifics, except the text section start and length (portable to other ARM devices?)
works with thumb code only
does not detect when switching from thumb to arm mode
depends on LR / PC being push’ed and pop’ed, hand-written assembler routine can cause trouble
is tested in/with my code base only

frequently asked questions (faq)

console-dev.de http://www.console-dev.de/2009/08/13/675/?preview=true&preview_id...

7 von 8 16.08.2009 13:57

Q: Why do I see so weird function names, like _ZN13DEMOPARTQUEUE9CutToPartEj and the like?

A: Because in C++, the function names go through name mangling. Name mangling is a technique used to solve various
problems caused by the need to resolve unique names for programming entities.

download

Dear visiter, 100% OFF on console-dev.de, take your chance and download stacktrace.zip now!

what I didn’t tell you yet

*1) LR does not always contains the address from where it was being called, but it holds the address where to return when the
function completes. When using code optimization levels above -O2 the compiler e.g. generates code that does not return to
functions where it was the last instruction involved anyway.

This entry was posted on Thursday, August 13th, 2009 at 8:13 pm and is filed under GBA, NDS, Programming. You can follow any responses to
this entry through the RSS 2.0 feed. You can leave a response, or trackback from your own site. Edit this entry.

Leave a Reply

Logged in as Peter Schraut. Log out »

Submit Comment

console-dev.de is proudly powered by WordPress
Entries (RSS) and Comments (RSS).

console-dev.de http://www.console-dev.de/2009/08/13/675/?preview=true&preview_id...

8 von 8 16.08.2009 13:57

